J. DIFFERENTIAL GEOMETRY
28 (1988) 513-547

MORSE THEORY FOR LAGRANGIAN INTERSECTIONS
ANDREAS FLOER

Abstract

Let P be a compact symplectic manifold and let L C P be a Lagrangian
submanifold with w2(P,L) = 0. For any exact diffeomorphism ¢ of
P with the property that ¢(L) intersects L transverally, we prove a
Morse inequality relating the set ¢(L) N L to the cohomology of L. As
a consequence, we prove a special case of the Arnold conjecture: If
m2(P) = 0 and ¢ is an exact diffeomorphism all of whose fixed points
are nondegenerate, then the number of fixed points is greater than or
equal to the sum over the Z2-Betti numbers of P.

1. Introduction

Let (P,w) be a symplectic manifold, i.e., P is a smooth manifold with
a closed and nondegenerate 2-form w. We can then assign to each smooth
function

H:PxR—R:H(z,t) = H(z)
a family of vector fields X; on P defined by
(1.1) w(-, Xy) = dH;.
This is called the Hamiltonian vector field associated with the time dependent

Hamiltonian H. If P is compact, then the differential equation

(1.2) & pma(z) = Huldrol@)

with initial condition ¢ ¢(z) = z defines a family of smooth diffeomorphisms
of P, which also preserve the symplectic structure, i.e. for each t € R, we
have ¢jw = w.

In fact, the set

(1.3) D = {¢n|t €Rand He C°(P x R)}

turns out to be a subgroup of the group of symplectic diffeomorphisms of P.
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As an immediate consequence of the existence of a nondegenerate 2-form w,
the manifold P must have even dimension 2n. An n-dimensional submanifold
L is called Lagrangian if

wx(€,¢)=0 VzeL;{,¢ceTL

(see, for example, [24]). It is well known that n is the maximal dimension for
any manifold with this property. If two orientable n-dimensional submanifolds
L and L' of P intersect transversally, then one can assign to each z € LNL/
a sign o(z) by comparing the orientation of T,L & T L' with the orientation
of T, P. The sum over these signs is a cohomological invariant of L and L'
and is called their intersection number. As a consequence, the intersection
number of L and L' gives a lower bound on the cardinality of L N L’ in the
case of transverse intersection. For example, the intersection number of a
Lagrangian submanifold L with itself equals the Euler characteristic of L,
since the normal bundle of L in P is isomorphic to its tangent bundle (see
[24]). Tt has been conjectured by V. I. Arnold [1], [2] that stronger estimates
hold if L is Lagrangian and L’ is obtained from L by an exact deformation
¢ = {¢¢}. Let us denote by I(L, ¢) the set of all z € ¢1(L) N L for which
{¢¢(z)} defines the zero element in m; (P, L). It is the purpose of this paper
to prove

Theorem 1. Let P be a compact symplectic manifold and let L C P be a
compact Lagrangian submanifold of P with no(P,L) = 0. Moreover, let ¢ be
an ezact deformation so that ¢1(L) intersects L transversally. Then to each
z € I(L,9), we can assign an integer u(zx) with the following property: Define
the polynomials :

z€I(L,¢)
(1.4) dim L
My(t)= > dimg, H*(L, Z2)t*.
k=0

Then there exists a polynomial Q € Z[t] with nonnegative coefficients so that
(L5) I4(T) = T (t) + Q)(1 +1).

Setting ¢ = 1, we obtain an estimate on |[L N ¢(L){ by the sum of the
Zs-Betti-numbers. In the orientable case, the restriction to Zs-coefficients in
(1.4) does not seem to be essential, but simplifies the analysis considerably.
It is conceivable that the methods of this paper can be refined to estimate
|LN¢1(L)| by the “cuplength” of L after dropping the transversality assump-
tion. Note that if one extends the set of exact deformations of L to allow
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self-intersections of ¢(L), then Weinstein proved in [25] that L N ¢; (L) may
be empty.

By applying Theorem 1 to the symplectic manifold P x (—P) (where the
sign of the symplectic form on the second factor has been reversed) and the
Lagrangian submanifold L = {(z, z) | z € P} we obtain the following corollary:

Theorem 2. If P is a compact symplectic manifold with wo(P) =0 and
@ s an ezact diffeomorphism of P all of whose fizxed points are nondegenerate,
then the number of fized points of ¢ is greater than or equal to the sum over
the Zq-Betti numbers of P.

Again, extensions to arbitrary coeflicients and to general fixed points are
expected to hold. Such a result was obtained by Conley and Zehnder [5] for the
torus 72" with the standard symplectic structure. The main idea of [5] is to
convert the fixed point problem into a variational problem on the loop space
of P and to apply Conley’s index theory. These methods were generalized
by Sikorav [19] and the present author [6] to cover e.g. surfaces of higher
genus. Theorem 2 is expected to remain true without any assumption on
m2(P). In fact, the general Arnold conjecture has been proved for P = CP"
by Fortune [11]. We hope to extend our methods to prove Theorem 2 for
general symplectic manifolds. Estimates of Lagrangian intersections have been
proved for the diagonal in 72" with the standard symplectic structure by
Chaperon (3] and for the zero section of cotangent bundles by Hofer [13], and
by Laudenbach and Sikorav [14]. For P and L as in Theorem 1, Gromov [12]
proved the existence of at least one intersection and hence of one fixed point
for any P and ¢ as in Theorem 2. Rather remarkably, Gromov does not use
the variational formulation. Instead, he applies an indirect argument which
involves manifolds of “pseudo-holomorphic” discs in a way reminiscent of the
use of Yang-Mills moduli spaces in four dimensional topology.

In some sense, our method in proving Theorem 1 interpolates between these
two approaches. To outline the proof of Theorem 1, note that the Morse
inequality (1.5) with @ € NJt] is equivalent to the fact that the intersections
serve as a model for the Z,-cohomology of L. To be more precise, let C? denote
the free Zs-module over the set of z € I(L, ¢) with u(z) = p. Then (1.5) holds
if and only if there exists a Zz-module-homomorphism 6 : C? — CP*! so that
66 = 0 and so that

(1.8) keré/imé = H*(L,Z2).

Now define the space

(1.7) Q:=Q(L,¢) ={2€ C>([0,1],P) | 2(0) € L and 2(1) € ¢1(L) and
[¢¢(2(8))] = 0'in 71 (P, L)}
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The tangent space T3} consists of tangent fields ¢ of P along z which are
tangent to L at 0 and to L’ := ¢;(L) at 1. Then w induces a “1-form”

a(€) = /0 w(()E(R)) dt

on ). Since w is closed and L and L’ are Lagrangian, this form is closed in
the sense that it can be integrated locally to a real valued function = on {2,
so that

(1.8) a(z) = da(z).

Moreover, under the hypothesis of Theorem 1, 2z can be defined globally on a
certain component of €2 (see Proposition 2.3 below). Since w is nondegenerate,
o vanishes exactly at the constant loops, so that critical points of = correspond
to intersections of Lg and L. Moreover, a critical point of 2z is nondegenerate
if and only if the corresponding intersection is transversal.

There are two main obstructions against applying standard methods of
Morse theory to . First, in order for 2 to satisfy the Palais-Smale condition
(see [17]), we would have to extend it to the Sobolev space H'/2(([0,1],0,1),
(P,L,L")), which is ill defined unless L and P are linear spaces. Second,
one easily verifies that the second derivative of = at each critical point is a
quadratic form with infinite dimensional positive and negative definite sub-
spaces. Hence the critical points cannot be expected to be related to the
topology of (2 itself. Because of the first problem, we will not try to define
a gradientlike flow for ~ with respect to some Hilbert structure on 2, but
proceed as follows: Let J € End(P) be an almost complex structure on P,
i.e. J?2 = —id, so that the bilinear form g = w(-, J) is a metric on P, i.e. g is
positive and symmetric. The triple (w, J, g) defines an almost Kahler struc-
ture on P, i.e. it satisfies all relations of a Kihler structure except that J is
not integrable. Then the “L2-gradient” of = with respect to g is g(z) = J3,
since for all £ € T,Q:

(1.9) (0= [ 756 = / w5 6) = da(2)€.
Then define a trajectory
u:R—Q, u(r)(t)=u(nt)
of the L2-gradient flow of z as the solution of the Cauchy-Riemann equation
ou du

In other words, trajectories are holomorphic maps u of the complex manifold

0:=Rx[0,1]={zeC|0<Imz< 1}
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into the almost complex manifold (P, J) so that »({0} x R) C L and u({1}
x R) C L' (compare [12]). This does not define a flow on all of ), since the
“Cauchy problem” for the (elliptic) Cauchy-Riemann equation is ill posed,
i.e. a smooth map {0} x [0,1] — P representing an element of {} does not
in general extend to a holomorphic map on any neighborhood of {0} x [0, 1].
On the other hand, however, the ellipticity of 0 greatly simplifies the anal-
ysis of “bounded” trajectories connecting two critical points. In fact, if all
critical points of « are nondegenerate, i.e., if L’ meets L transversally, then
we can define a Banach manifold Z(z,y) of paths u : R — () so that in a
precisely defined sense lim,_, ¢(7) = y and lim,, o 4(7) = z and so that
u — Ou is a smooth section of a Banach space bundle over %(z,y). Then
the ellipticity of @ ensures that it is a Fredholm section, i.e. the linearization
of J at any trajectory has closed range and a finite dimensional kernel and
cokernel. Moreover, an arbitrarily small perturbation of the almost Kéhler
structure J makes all these linearizations surjective, so that the space of tra-
jectories connecting z with y is a finite dimensional manifold. This procedure
was motivated partly by Taubes analysis of instantons on (asymptotically)
cylindrical manifolds and uses very similar analytic techniques (see [22]). It
was carried out in [7] and the results are summarized in §2. We call this
manifold a cell in the Morse complex of bounded trajectories. The dimension
of this cell, i.e., the index of  on #(z,y), can be computed as the difference
u(z) — u(y) of a suitably defined integer valued “relative Morse index” u of z
and y (see [8]). This is analogous to the gradient flow of a smooth function f
on a finite dimensional manifold M: for an open and dense set of metrics on
M, the set of trajectories between two critical points is a finite dimensional
manifold whose dimension equals the difference of the Morse index of these
two critical points (see e.g. [16]).

Since equation (1.10) is invariant under time translations, the above dis-
cussion implies that the space of trajectories between critical points of index
difference 1 consists of isolated trajectories. The crucial step is to show that
this set is always finite. This follows from the compactness considerations in
(6] (see also [12] for similar results for holomorphic closed curves and holo-
morphic discs). We can now define the operator § of (1.6) as follows: For each
y € I(L,$) with u(y) = p, consider all trajectories ending at p and starting
at any critical point of Morse index p + 1. The above discussion allows us
to define 6(y) as the formal sum of the points z over all such trajectories.
However, to obtain an invariant result, we would have to attach a sign to each
trajectory. In the finite dimensional theory, this sign is well defined as the
“normal” intersection number of the stable manifold of y at the trajectory
(see [16]). Since this definition of the sign is difficult to generalize to our
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infinite dimensional problem, we restrict ourselves in this paper to the mod-2
reduction of 6.

It turns out (see Proposition 3.2 below) that {6,} satisfies the coboundary
property 6,06p—1 = 0. We can therefore define the index cohomology

IP(L,¢;J) =keré,/Imé,_;.

This is motivated by the following construction: Let S be a compact invariant
set of a continuous flow on a finite dimensional manifold. Then its Conley
index I(S) = [X/A, {A}] is defined in [4] as the pointed Lomotopy type of the
topological quotient of a neighborhood X of S by a suitably defined “exit set”
A. Tt is proved in [9] that its cohomology can be computed by a construction
analogous to the definition of I*. This observation, which represents an alter-
native proof of the Morse inequalities, has been partly used in [16]. With the
field Z5 replaced by R, it has been studied by Witten in his recent paper [27],
which partly prompted our approach to the Morse theory of the symplectic
action.

The crucial fact is that I(S) and hence its cohomology is invariant under
continuous deformations of the flow as long as the invariant set S remains
“isolated” in a certain sense. We will use a similar property of I*: In §3,
we show that the groups I?(L, ¢; J) are not only independent of J, but also
invariant under a change of either L or L' by an exact deformation ¢; of P.
This even holds if in the course of such a deformation, L and ¢(L’) have a
nontransversal intersection.

In order to complete the proof of Theorem 1, it now suffices to calculate
I*(L,$,J) in the case where ¢ is a small exact deformation and J is chosen
conveniently. This problem is solved in [9]: If ¢ is induced by a time indepen-
dent function H on L which is extended to P in a certain well-defined way,
then bounded trajectories in {3(L, ¢) with respect to J correspond to trajecto-
ries of the gradient flow of H on L with respect to ¢ = w(J",-). In particular,
the spaces of trajectories in (L, ¢) are regular if and only if the gradient flow
of H on L is of Morse-Smale type. The index I*(L, ¢) can then be calculated
by counting trajectories of the gradient flow on L (see Theorem 3 of [9]). It
then follows from Theorem 1 of [9] that it is isomorphic to H*(L;Z,). This
completes the proof of Theorem 1.

The research for this paper was essentially carried out at the State Univer-
sity of New York at Stony Brook. The author wishes to thank M. Gromov,
C. Taubes, and E. Zehnder for valuable discussions.
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2. The Morse complex

In this section, we essentially recall some results from [7] and [8]. For any
two Lagrangian submanifolds L and L’ of P and for k > 2/p, consider the
space of L¥-paths

FirocLn®) = (u € L1 (0, P) [u(R x {0}) C L
and u(R x {1}) C L'}.
An almost Kihler structure is a smooth section of the bundle with fiber
(2.1) S; = {J € End(T,P) | J? = —id and w(J-,-) is a metric}.

For technical reasons, it is often convenient to allow J to vary smoothly with
t € [0,1], i.e., we denote by J a smooth section of the trivial extension of S,
over [0,1] x P. We then replace (1.10) by
du(r,t) du(r, t)

or ot
which is still translationally invariant in 7. We now define the space of
bounded trajectories with respect to J as

My =ML,L')={u:R— Q| 0u=0and ||Vul]z < co}.

(2.2) dyu(r,t) = + Ji

Here, Vu = (0u/0r,0u/0t) and || ||2 is the L?-norm with respect to the
metric g. If no confusion can arise, we will omit the subscript J. It follows
from elliptic regularity theory (see Lemma 2.1 of [7]) that each u € .# is
smooth. Other results of {7} are summarized in

Proposition 2.1. Forz,,z_ € LNL', define

M (24,0_) = {ue//m lim u(7, ) =zi}.

Then we have
M = U M (z,y).
z,yeLNL!
Moreover, if L intersects L' transversally, then for each z,y € LN L' there
exist smooth Banach manifolds

P(z,y) = F(2,y) C F,

loc

so that (2.2) defines a smooth section E) of a smooth Banach space bundle over
P(z,y) with fibers Z, = LP(u*TP), and so that # (z,y) is the zero set of 0.
The tangent space T, P = Ty, P(z,y) consists of all elements & of LY (u*T)
so that £(r,0) € TL and &(r,1) € TL’ for all T € R. The linearizations

(2.3) E,:=Dd(u) = T,P — %,
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are Fredholm operators for u € M (z,y). There is a dense set Feg(L,L")
of C*-almost Kihler structures on P so that if J € Feg(L,L'), then E, is
surjective for all u € M (z,y).

We will also need certain compactness properties of the Morse complex.

Note that the additive group R operators on each .#£;(z,y) by translation:
(p*u)(r,t) = u(r - p, ).

Proposition 2.2. Assume that J; € £, J; — J and Ly — L' in C*°,
Then each sequence u; in M; = My, [L, L;] contains a subsequence converging
to a family of adjacent trajectories vy, € M (20—1,%a), 1 < a < N, in the
following sense: For each 1 < o < N there exists a sequence o; € R so that
o5 * u; — Vg locally in C*(0, P). Moreover, if N = 1, then v, converges in
the relative topology of P(z,y).

It follows in particular that restricted to r > 0, the sequence p * u for
u € # (z,y) converges to the constant map uniformly in all derivatives. In
fact, if this were not the case, then by reparametrization one could construct
a sequence violating Proposition 2.2. In the same way, it follows that for any
€ > 0, all but finitely many u; considered as paths in C*([0, 1], P) N Q takes

values in an e-neighborhood U.(vy,--- ,vyx) of the combined images of V,.
Let us now consider the situation of Theorem 1. Define (@) = Q(L, §) as
in (1.7).

Proposition 2.3. Let {¢r}rer be an ezact deformation of P with ¢ =
id. Then we have bijections

St UDr) = Udrrp) : D u(2)(t) = Pasepz(t).
Now assume in addition that mo(P,L) = 0. Then (1.8) defines a function
z: Qo) — R. If ||Vu|| is defined with respect to the standard metric on ©
and the metric g = w(j+,-) on P, then for all u € P(z,y) we have

(2.4) 31Vl 2 2(z) - 2(y),

with equality if and only if u € H(z,y).
Proof. It suffices to show that for all smooth maps u : 8! x [0,1] — P
with u(7,0) € L and u(r,1) € L', we have

/ u*w =0.
S1x{0,1]

To this end, let us consider u as a map u : S — Q and define the map
H:8'x[0,1]2 — P: H(1,t,A) = ¢o »(u(r))(2)-

It follows from the exactness of ¢, and from Stokes’ theorem that

/u*w = /(¢1u)*w.
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Hence it suffices to consider the case where L' = L. Moreover, since we
restrict ourselves to the path connected component of the constant elements
of Q(L,L), we can assume that %(0) is constant. Then we can redefine the
map u to yield a map @ : (D?,8') — (P,L). Since m(P,L) = 0 and w
is closed, the integral of u*w over D? vanishes. This proves that < is well
defined. The last assertion follows from
2 _ 7.2 Ou _Ou
|Vu|? = |0u|® + 2 <E,Ja—t>

and (1.9). q.ed.

In [23], Viterbo defined a relative Morse index p,(z,y) for any pair (z,y)
of transversal intersections, which in addition depends on the choice of a path
u in ) connecting z and y. In [8), this number was proved to be equal to the
Fredholm index of D3 (u). Moreover, it was shown that under the topological
restrictions of Theorem 2, u,(z,y) does not depend on u, and that it can be
written as the difference of suitably defined Morse indices of = and y. We
summarize these results in the following proposition.

Proposition 2.4. With P,L and ¢ as in Proposition 2.2, there exists a
map

piI(L,¢) — Z

which is well defined up to an additive constant, so that for u € # (z,y):
(2:5) index(D8(u)) = p(z) — u(y)-

If J € Feg as tn Proposition 2.1, then (2.5) is the dimension of # (z,y).

3. The index cohomology

Let L C P be as in Theorem 1, and let ¢ be an exact deformation so that
#(L) meets L transversally. We want to define I*(L, ¢; J) according to the
outline given in the introduction. We also want to show that this group is
independent of ¢ and J.

Let us denote by C* the free Z,-vector space over the set I(L, ®). By virtue
of the Morse index p of Proposition 2.4, we have a grading,

(3.1) cr=@ce,

pEZ

where C? is the free Zs-vector space over the intersection points of Morse
index p. We will define a coboundary operator on C* by counting trajectories
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between points in &. Recall from §2 the operation of the translational groups
R. Since the action 2 is strictly decreasing on nonconstant trajectories, it has
a slice

—

(3.2) A (z,y) = #(z,y)/R = {ue#(z,y) | 2(u(0) = ;(2(z) + 2(¥))}-

Lemma 3.1. IfJ € Feg(L,¢#(L)) as in Lemma 2.1, then ﬁ(z,y) 5 a
manifold of dimension pu(z) — u(y) — 1. If u(z) = p(y) +1, then /%\(a:, y)isa
finite set.

Proof. The first assertion follows from (3.2). The second assertion follows
from Proposition 2.2, since if u(z) — u(y) = 1 and J € Feg, no family of
adjacent trajectories with NV > 1 can exist between z and y. g.e.d.

Now let (, ) denote the canonical Zg-valued inner product in C*. Then
Lemma 3.1 justifies the following construction.

Definition 3.1. For u(z) = u(y) + 1, and J € Feg(L, $1(L)), we define

(3.3) 6 =26(¢,J): CP — CPHL, sy)= E z{z, 8y),
wu(z)=p+1

where (z,6y) € Zs is the mod-2 number of elements of //Z”\(a:, y).
Lemma 3.2. 66 =0.
Proof. We have for z € CP~1 and z € CP*1:

(3.4) (z,062) = E (z,6y){y, 62).

w(y)=p

Geometrically, this is the number modulo 2 of pairs of adjacent trajectories
joining z and z. The crucial observation is now that since both # (z,y) and
A (y, z) are regular, each such pair of trajectories gives rise to a 1-parameter
family of trajectories in Z\(x, z). In fact, by Proposition 4.1, pairs of adja-
cent trajectories between z and z are in 1-1 correspondence with the ends of
M (z,y). Hence their number is even, which proves Lemma 3.2.

Definition 3.2. Let L be a Lagrangian submanifeld of a compact sym-
plectic manifold P, and let ¢ € & be an exact deformation so that ¢1(L)
meets L transversally. Then for every J € Feg(L,¢1(L)) as in Proposition
2.1, we define the graded group

IP(¢,J) = ker[§ : CP — CPF1|/6CP1,

with § = 6(¢, J) as in Definition 3.1.

The main result of this section is:

Proposition 3.1. For any ¢,¢' and J, J' as in Definition 3.2, there is
an isomorphism IP(¢,J) = IP(¢', J') of Za-vector spaces.
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Proof. Since & is connected by definition, we can connect ¢g with ¢; by
a smooth family {¢x}o<a<1 in &. Of course, we cannot avoid nontransverse
intersections along such a deformation. A typical nontransverse intersection is
given by the following example: Let us identify (P,w) locally with the linear
symplectic space (C",w). Let L;,Ls be two transverse linear Lagrangian
subspaces of C®~! and let R, §! C C be the real axis and the unit circle
around : respectively. Then set

(3.5) L=SxL;, Ly={R+4)\) x L.

Lemma 3.3. Any ¢o,¢1 € Z such that ¢o(L), ¢1(LYBL can be con-
nected by a smooth isotopy {¢Px}o<r<1 so that (L) and L have at most one
nontransverse intersection in the vicinity of which the deformation has the
form (3.5).

Proof. In a neighborhood of each y € ¢»(L) N L there exists a Darboux-
chart so that L is linear and ¢, (L) is the graph of the differential df of some
smooth function f on L. Clearly, ¢(L) N L is the set of critical points of
f, and an intersection is transversal if and only if the corresponding critical
point is nondegenerate. Now it is well known from singularity ‘theory that
any smooth family {fx}o<a<i of such functions can be deformed into one
so that all critical points of fy are either nondegenerate or that the Hessian
Dgrad, f with respect to some metric on L has a 1-dimensional kernel &
on which the quadratic differential D? grad, fx : k — k is a nondegenerate
quadratic function. In the latter case we can deform fy locally into a family of
functions inducing the deformation (3.5) without introducing any new critical
points. By another local deformation, we can change the critical parameter
values in case one f, should have more than one degenerate critical point.
q.e.d.

We will denote the set of critical parameter values by Ag. In order to prove
the proposition, we first assume that Ag = . In this case, we have smooth
families {zx} = z in Iy = {(z,A) € L X A | ¢»(z) € L} C P x A. Define the
parametrized Morse cells

(3.6) Hp(z,y) = {(u, A) | u € A5, (T2, 92)}-

Moreover, let 7 : 1x[0,1]x P — P denote the projection. Then if J,, J, € 7,
we define with (2.1)

AA(Ja, Jb) = {J € C%(n*S) | Jj(ayxp = Ja and Jjpyxp = Jo}-
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Proposition 3.2. Let Ly, A € A = [a,b], be a smooth family of La-
grangian submanifolds of P so that LBLy for all A € A. Assume that J, €
Freg(L,Lg) and Jy € Feg(L,Ly). Then there exists a Baire set Jp reg C
AA(Ja, Jp) so that for each Jy € F reg, the parametrized trajectory space
M (z,y) of (3.8) 15 a smooth manifold of dimension u(z) — u{y) + 1. More-
over, we can assume that for each A € A, there exists at most one tragectory
n Ay joining intersection points of equal Morse indexz.

Proof. Except for the last statement, this is Theorem 5b of [7]. To show
how the last statement follows, we briefly review the proof. Let Z(zy,yx)
and .2 (z,yx) denote the Banach manifold and the Banach space bundle of
Proposition 2.1 for the pair L, L) of Lagrangian subspaces. It was shown in
Theorem 3a of [7] that they define a Banach manifold Z(z,y) = {(u,A) |
u € P(zx,yx)} with a corresponding bundle 73, so that (), u) = du defines
a Fredholm section of ., with Fredholm index u(z) = u(y) + 1. To prove
the genericity result, we first define as in Lemma 5.1 of [7] a suitable Banach
space £, of smooth perturbations of Jx. Let m1 : Py X FH — Py be the
projection and define the section

EE Py X ﬂ - W;,E”A, g(u,)\,JA) - gJ)‘U.

Then the proof of 7, Lemma 5.2] applies to show that 0 is a regular value of
9 and that the projection

mo : {(u, Jp,A) | Ogu =0} = Jy

is a smooth Fredholm map. For each J € %, 5 ' ([J]) = .#4. Hence the first
assertion of Proposition 3.2 follows from the Sard-Smale theorem [7].

In order to prove the second assertion, we consider for any z,z’ € C? and
y,y € C9 the set

X1 ={\uv,J) |u € dy(z,0), vedr(yy), J €A

Again, this is a Banach manifold. The projection X; — Jj now has index
—1. Hence for every regular value of the projection map, the counterimage is
empty. This completes the proof of Proposition 3.2.

It follows from the proof of Lemma 3.1 that if Ag = &, then the homomor-
phism 6§y = 6(¢x, Jx) and its cohomology I3 is well defined on the complement
of the set

A1 = {X] 3z, y so that u(z) = u(y) and £, (z,y) # I}

In the same way as in the proof of Lemma 3.1, it also follows that A; is
discrete, so that by restricting A to a neighborhood of 0, we can assume that
Ay = {0}. Then we have

Lemma 3.4. If A() = Al = @, then <20, 50y0> = <21,61y1).
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Proof. As in the proof of Lemma 3.1, one shows that the set /i?(z,y) for
p(z) = p(y) + 1 is compact for all A € A — A,. Now Lemma 3.4 follows from
the fact that the number of ends of the 1-dimensional manifold j/; (z,y) is
even. q.e.d.

Let us now assume that A is a neighborhood of 0 in R and that {0} = A,
i.e. that there exists exactly one trajectory u connecting two points 2, and
z_ of equal Morse index p (see Proposition 3.2). We can define § = §(J, ¢»)
for A > 0 and v = §(Jx,¢x) for A < 0. The difference between v and § is
due to the fact that for trajectories ending at z_ or originating at z, the
proof of Lemma 3.1 breaks down. For example, a sequence of trajectories in
A (z,2_) may “split” into a pair (u,Z) with u € .# (z,z,). However, this
lack of compactness can be measured algebraically:

Lemma 3.5. Forye CP!;

(3.7) vy =6y + z4(z_,0Y).
Moreover, we have
(3.8) - =6x_ + b6z4.

For all other generators of C*, we have v=2.

Proof. Whenever z # z and y # z_, Proposition 2.2 yields compactness
even for .#(z,y), so that we conclude as in Lemma 3.4 that (z,8y) = (z,vy).
Now consider z € CP*!. By Proposition 4.2, there exists for p large enough
a local diffeomorphism

#0: M (z,24) X (p,00) = Mp(z,2-),  (u,p) — uF,T.
On the other hand, the compactness result of Proposition 2.2 together with
the uniqueness statement of Proposition 4.2 implies that the complement of
the image of #% in .#)(z,z-) is compact. It follows that the number of
trajectories in . (z,z_) and #_(z,z_) differs modulo 2 by the number of
trajectories in .#(z, z+). This proves (3.7). In the same way, we prove (3.8)
by considering for y € C?~1 the map
Mo(z-,y) X (0,00) = My (z+,y), (v,0) — v#E.

Now the invariance of I} follows by purely algebraic means:

Lemma 3.6. The map ¢ : C* — C* defined by ¢(z) = z + 24 (z—, z)
satisfies ¢° = id and
(3.9) 6 =¢n.

Proof. 'The first assertion is obvious. To show that ¢ is a chain map, we
calculate for y € CP—1:

66(y) = 8y = vy + 24 (2, 1y) = (7y).



526 ANDREAS FLOER

Moreover, we have
6(z-) =6(z— +24) =7(z- +24) — 124 =2 = B(y2-).

For all other generators of C*, equation (3.9) is obvious. g.e.d.

We have so far proved the continuation result under the hypotheses that all
intersections remain transverse, i.e., that the intersection set does not change
essentially. Since we want to apply the index cohomology to estimate the
number of intersections, the crucial step is to show that it remains invariant
even when intersections vanish through nontransverse intersections as in (3.5).
As above, we set, the critical parameter value to zero. Let us denote by (C*,~)
and (D*,6) the chain complexes for small negative and small positive values
of A, respectively.

It is here that we make use of the variational structure of the problem.
Because of relation (2.4) with a globally well-defined function = on 2, ||Vu||2
for trajectories u € .# (y4,y—) can be estimated by «(y4+) — «(y~), which
converges to zero for A — 0. It follows from Proposition 2.2 that for A small
enough, all trajectories in .# (y,,y—) are contained in a small neighborhood
of the nontransverse intersection y. Now it follows from [9, Theorem 1], that
for small negative A,

(3.10) (ys, 6y_) = 1.

Let w: C* — D* denote the projection, i.e.

T2 =7 — Y- (y—, T) — Y+ {Y+, 7).
Let ¢ : D* — D* denote the homomorphism induced by the inclusion. Unfor-
tunately, these two homomorphisms are not chain homomorphisms in general.
This is due to the fact that trajectories from z to y_ and from y4 to z may
merge to trajectories from z to z. As in the case above, we have to measure
this phenomenon in algebraic terms. This will be carried out in §5. More
precisely, the following formula follows from Proposition 5.1: .

Lemma 3.7. For u(z) = p, we have 6z = ny(z + y—(y+,~x)). For
u(z) # p, we have 5z = wryz.

Now define ¢ : C* — D* by ¢z = n(z + Yy_{y+z)). In a less formal
notation, we have ézy = nyz_, §z_ = 0, and §z = z otherwise. Moreover,
define ¢ : D* — C* by ¢z =iz + y_ (y+,¥iT).

Lemma 3.8. ¢ and ¢ are chain maps.

Proof. For u(z) = p, we have ¢z = z and

b0z = bz = w(yz + Y- (y+,¥z))
= my(z + y—(y+,72)) = 2.
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For z € CP~1, we have

¢z = 1y(¢z) = 7(vz) = P(7x).
For z € CP*1 we have
bdx = 6(m(x + Yy-(y+,2))) = o7z + 67yz + (Y4, 2).
If x # y, this yields
0z = bz = vz = ¢z
If x = y;, we obtain

bpz = bmyy— = ymyy— = v(W- + v+ (y+7-))
= Y(y+ Hy+7y-) = 1Y+
by (3.10). Since yy+ = ¢yy+, this completes the proof of the chain property
of ¢ for pu(z) =p+ 1. For u(z) > p+ 1 or u(z) < p — 1, the chain property
of ¢ is obvious.
To prove the chain property for 1, consider £ € DP~!. We have
P(6z) = Y(imyz) = imyz + y— (Y4 Vi)
=iz + Y- Y+, 1(¥z — y- (y-72)))
Y+, VY- {y-77))
Y+, VY- ) Y-, 12)
y-z) =T = Y7

=1myT + Y-
=TT + Y-

P T .

=Tz + y-
For z € DP, we have
P(6z) = i(67) = iry(z + Y- (y+, 1iz))
= tryp(z) = v (z).
The last equality holds because the y-component of 4 (z) vanishes:
(Y+,76(2)) = (4, 7(z + y—{y+, 7))
= (Y45 72) + (Y4, =)+, 12)
= (1 + <y+1ﬁ/z—))<y+aﬁ/x) = Oa

by (3.10). The other cases are obvious. q.e.d.
We can now define the induced maps 94 and ¢4 on the index groups.
Lemma 3.9, 1u and ¢4 are inverse to each other.
Proof. Since ¢{y—) = 0, we calculate that ¢ o4 : D* — D* is even equal
to the identity:

o(¥(z)) = iz + y—(y4+. 1iz))
= ¢(iz) + d(y-)(z+, iz)
= ¢(iz) = iz + yz_(z_, i) = 2.
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On the other hand, 1 o ¢ is not the identity, but it induces the identity in
cohomology since the homomorphism 8 = y_{y+| is a chain homotopy (see,
for example, [20]) between 1o¢ and the identity on C*, i.e., p¢—id = fy+~5.
To see this, first calculate

(B +16)x = y—{y+,72) + 1Y {y+,2).

Then it follows that

P(Pys) = Y(myy-) = 1myy— = W- + Y+

For all other generators of D*, we have

Y(oz) = = + y—{y+,77).

This completes the proof of Lemma 3.9 and hence of Proposition 3.1.

4. Gluing trajectories

—

By Proposition 2.2, the ends of .# (z,y) correspond to families of adjacent
trajectories connecting z and y. In this section we want to show that in the
“generic” situation J € Zeg(L, #(L)) of Proposition 2.1, the converse is true:
any pair (u,v) € /Zl\(z, y) X/y?(y, z) gives rise to divergent families in Z(:v, z).
The construction of these families proceeds essentially in the same way as
Taubes’ construction [21] of noncompact instanton families on 4-dimensional
manifolds. We first define “approximate” trajectories using “cutoffs”. Note

—

that for u € #(z,y) and 7 large enough, there exists £(7,¢t) such that

(4.1) u(7,t) = (exp, €)(7,t) = exp,(t, &(7,1)).

Here, exp, : [0,1] X T,P — P is a smooth family of charts of P such that

—

exp, (0,TyL) C L and exp,(1,TyL') ¢ L'. If K C .#(z,y) is a compact
subset, then there exists a constant po = po(K) such that (4.1) holds for all
u € K and 7 > po. Then, we also have a decreasing function &: [pg,00) — Ry
with lim, . €(p) = 0 and

(4.2) 1€l (p,00)x10,1] 11,2 < €(P)

—

uniformly in € K. Similarly, if K’ is a compact subset of .# (y, z), we can
choose po and ¢ so that (4.1) and (4.2) hold for all u(r,t) = v(—7,t), v € K'.
Now let § : R — [0,1] be a smooth' function with §(r) = 0 for 7 < 0 and
B(ry=1for7 >1.
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— —

Definition 4.1.. For compact sets K C .# (z,y) and K' C .# (y,z) we
define the map
K X [pg,00) x K' — P(x,2),
(4.3)
u(r + p,t) for 7 < —1,
s = (1, p,0) — (1) = expy (¢, B(~7)E(T + p,t) + B(7)s(r — p,1))
P XA for -1<7<1,
v(r —p,t) for 7 > 1.
and ¢,¢ are defined so that u = exp, £ for 7 > p — 1 and v = exp, ¢ for
T<—p+1
It is easy to see that Definition 4.1 defines a continuous map, and that by
(4.2), its image is almost holomorphic in the following sense.
Lemma 4.1. For every compact set K C # (z,y) and K' C # (y,2)
there exists a decreasing function € : Ry — Ry with lim,_, €(p) = 0 so that
for (u,v) € K x K' and p > po,

ngxnp < e(p(x))-

Now the main result of this section can be stated as follows: Consider on Q2
the metric dist(z,y) = maxo<;<1 dist(z(t), y(t)) for some metric on P. Then
for every (u,v) as above, define

(4.4) Ue(u,v) = {z € Q| dist(z,u(r)) < € or dist(z,v(1)) < e
for some 7 € R}.

Proposition 4.1. Assume that z,y, 2z are transverse intersections and

that K C # (z,y) and K' C .# (y,z) are compact sets containing only regular
trajectories. Then there exist positive constants pg and C and a smooth map

—

# : K X [po,OO) x K'— %(13,2), X eXpr(gx)

with ||€,]|1p < C||Owy]||. Moreover, for u and v in the interior of K and K,
there exists € > 0 so that /ax,z) NUe(u,v) is contained in the image of #.

A trajectory u is called regular if E, is surjective. There also exists a
parametrized version of Proposition 4.1. We restrict ourselves here to the
simplest case, which is needed in the proof of Lemma 3.2 above. Assume that
w(z) = p(y) and (u,N) € #x(z,y) (see (3.6)). If in addition v € A\ (y, 2),
then by Proposition 2.2 we expect to find trajectories in the e-tube

Ue(u,v; A)P = {(z,1) € C°([0,1], P) x A | |X — p| < € and there exists
€ € R4 so that dist(z, w(r)) < € for w = u or w = v}.
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Proposition 4.2. Assume that Ly, A € R, s a smooth family of La-
grangian embeddings and that z,y,z € L N Lo are transverse intersections.
Moreover, assume that u(z) = u(y) and that u € %(z,y) 1s a nondegenerate
zero of O in the sense of Proposition 3.2. Then if K C -/%;(y,z) 18 compact
and contains only regular trajectories, there exist positive constants pg and C
and a local diffeomorphism

#p :%’,\(a:,y) X [po,OO) X K _"%A(zaz)a
x = (u,p,v) — exp,, &,

where wy, 13 as in Definition 4.1 and |[€||1,5 < C||0wy||p- Moreover, for every
(u,v) in the interior of K X K' there exists an € > 0 so that #n(z,2) N
Ue(u,v; A) is contained in the image of #.

The main tool of the proofs of Propositions 4.1 and 4.2 is the following
version of Newton’s, or rather Picard’s method:

Lemma 4.2. Assume that a smooth map f : E — F between Banach
spaces E and F has an expansion

f(€) = f(0) + Df(0)¢ + N (¢),
30 that Df(0) has a finite dimensional kernel and a right inverse G and so
that for €,¢ € E:
IGN(&) = GN()lle < ClElle + sl eI = <lls
for some constant C. Set e = (5C)~1. Then if ||Gf(0)||g < /2, the zero set

of f in Be = {€ € E||[€]| < €} 1s a smooth manifold of dimension equal to
the dimension of kerdf. In fact, if we define
Ke = {¢ € ker Df(0) | ||¢]|5 < €},
then there exists a smooth function
¢: K. — K+ :=GF CE,
with ¢(€ + ¢(€)) = 0 so that all zeros of f in B are of the form & + ¢(&).
Moreover, we have
lle(O)lle < 2lIGS(0)e-

The proof of Lemma 4.2 proceeds by the Banach fixed point theorem and
can be found in [10].

Proof of Proposition 4.1. In Proposition 2.1, we quoted from [7] the fact
that 0 is a smooth section of a smooth Banach space bundle . over % (z, z).
In fact, explicit charts of Z(z,z) and trivializations of %’ were given in
Theorem 3 of [7], which convert 8 locally at w into a (Frechet) smooth function

0w : TP — LF(w*TP),

(4'5) gw(g) =5(w)+Ew€+Nw(€)'
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E,, is linear and for w € .# (z, z) coincides with the linearization of the section
d at w. The nonlinear part NN,, satisfies the estimate

(4.6) 1V (€) = Naw(©)llp < CQ)([[€lhp + Vsl p)IE = Sl ps

with C(w) depending only on ||Vw||o. We want to apply Lemma 4.2 to (4.5)
with w replaced by w, for p(x) large enough. Then the constant C(wy) is
bounded for u,v € K x K’ and p < pg. Hence by Lemma 4.1, it suffices
to show that there exists a family of right inverses Gy, of E, which are
bounded independently of x if p(x) is large enough.

Lemma 4.3. There exist constants Co and po so that if x = (u,p,v) €
K X [pg,00) x K' and w = wy, then there exists a continuous right inverse

G: LP(w) — W(w) of L., with
1G¢€ll1p < Calléllp:

Proof. For £ € kerE, = T, # (z,y) and ¢ € ker E, = T,.# (y,2), we

define
Blr+ 1)E(r) forr>1,

(e#)(r) =4 0 for r € [-1,1],
Bt —1)¢(t) forr < -1,
with 8 as in (4.3). Denote by W (w) the L2-orthogonal complement of these
sections in T}, %. We want to show that for all £ € W (w),

(4.7) 1€ll1p < CallEwéllp-

Since the Fredholm index up(z) — u(z) of E, is equal to the dimension of
ker E,, @ ker E,, this proves Lemma 4.3. To prove (4.7), assume the contrary.
Then there exists a family (uq,v,) € K x K’ and p, — oo so that with
Xo = (Ua, Pas Vo) aDd Wa = Wy, , there exists &, € W (w,) satisfying

(4.88.) |€a”l,p =1,

(4.8b) |Eatally — 0

with E, = E,,, . We will derive a contradiction to {4.8a). Therefore, consider
first the vector field £y, defined by

(4.9) D; exp,(t; foa(T, 1)) = &alT,t)

on [—3,3] x [0,1]. Here, ¢ is defined so that exp, ¢ = w on this interval as in
(4.1). Our first aim is to show that

(4.10) €0a — 0 in LP([=3,3] x [0, 1], T, P).

Note therefore that £o. is defined by (4.9) on increasing subsets 6, T ©.
Choosing a suitable sequence of cutoff functions 8,, we find that the sequence
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Baboa of smooth maps @ — T, P is bounded in L}(8,T,P). Hence there
exists a weakly convergent subsequence whose weak limit €4, satisfies 9p&oo =
0, where 3y is the standard Cauchy-Riemann operator. However, with the
given boundary conditions, this operator has no kernel in LP, so that e = 0.
Now a compact Sobolev embedding implies (4.10).

Now choose a cutoff function fo : R — [0,1] so that Fy(r) = 0 for |7| > 3
and Bo(r) =1 for |r| < 2. Then we have

1Bo&all1p < CillBoboallrp < Call@ofoboall

< Ca([1BoBoballp + 11Bo€ally)

< C3(I|Ea€a”p + ”ﬂ(l)fa”p)
This converges to zero by (4.8b) and (4.10). Hence £ converges to zero in the
L% -norm on O,.

Now define £ = f1&, for By (r) = B(£(r + 1)). We want to show that

Sa =paréy —0 inLi(uzTP),
Na = —Pa * €5 — 0 in LY(WLTP).
This will complete the proof of Lemma 4.3, since then

l€allip < 1Boallrp + 1€ 1110 + 165 111

converges to zero, in contradiction to (4.8a). To prove (4.11), we use the fact
that E,, is uniformly invertible away from its kernel for u € K. Therefore,

l[sall1,p £ CllBussallp = CHEuQEZHP

< C(IIB=Eu,llp + 118~ &allp)
converges to zero by (4.8b) and by (4.10). This completes the proof of Lemma
4.3,

It remains to prove that the map # is surjective onto /Z’E\ = /Z’\(z,z) )
Ue(u,v). By the uniqueness assertion in Lemma 4.2, it suffices to show that
for each 6§ — O there exists an € > 0 so that if w € U, (u,v), then w, = exp,, £
in the sense of (4.1) with ||{||;,, < 6. Define a map s ://Z—» R by

2(w(s(w))) = 2(2).
By Proposition 2.1, we know that for e(u) small enough and s{w) —1 <7 <
s(w) + 1, we have w = exp, # with
(4.12) Inll1.p < 61(6).

Here and in the following, we denote by ¢, : R — R a continuous map which
is independent of u and satisfies ¢o(0) = 0. We can define an element of
P(z,y) by

(4.11)

N { exp, B(—(s+ )¢ for r > s -1,
U=

u otherwise.
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Similarly, we define ¥ € Z(y,z). Moreover, define 0,7 € R by 2(u(0)) =
1(2(z)+2(y)) and 2(v(r)) = 3(2(y) +«(z)). Then for X = (0 *&,o+7,7D),
we have wy; = exp, € with ||€]|1,p < ¢2(€). To show that o % % is close to u,
note that by Proposition 2.2, we have

(4.13) oxuU=-exp, & with ||€|]1,00 < ¢3(e).
In order to obtain estimates in integral norms, we expand as in (4.5),
O0u :WP(u*TP) — LP(u*TP),  3,(€) = Eyé+ N,(6).

The zero order term vanishes since u is holomorphic. Since u is regular and
since on the finite dimensional kernel of E,, all norms are equivalent, we have

1€l < CUIEWE]lp +11€]lo),
(4.14) < C(110u(€) = Nu(E)llp + 11€loo)
< C(lioall, + [INu(O)llp) + ¢3(e)-

Note that ||£]|, < oo since u € P (z,y) and % is constant outside a compact
set. Now we have estimates ||3%|| < ¢4(¢). Moreover, by Theorem 3a of [7],
we have

N2 (O)lp < Oll€l1,00l1€llp < P5(e)lI€]ln
with C depending only on u. It follows that

1€ll1.p < d6(e){L + lI€lln}

which for & small enough proves that lim._,g ||£]|1,, = 0. This completes the
proof of Proposition 4.1.

Proof of Proposition 4.2. We apply Lemma 4.2 to the map (see [7, Theo-
rem 3al)

(4.15) Oy : TPy — LP(w*TP)

for w = wy. Here, T, %, = T, 7 ®R is the tangent space of the parametrized
path space (see also the proof of Proposition 3.4 above). The additional
dimension is generated by a certain section X of w*TP. The estimates on the
constant and the nonlinear parts of (4.15) are the same as in Lemma 4.1 and
(4.6) (for the latter see Theorem 3a of [7]). To prove the invertibility of the
linear part, we proceed as in the proof of Lemma 4.3. We have to show that
for every (§,AX) € T, Py with £ L ker Ey# ker E,,

(4.16) 1€ll1.p + Al S E | B, (€ + AX)l,

for p(x) large enough. Since the index of E,,, on T, & is equal to dim ker £, +
dimker E,, (4.16) implies that E,, is surjective and therefore has a right
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inverse. Again, the proof of (4.16) proceeds indirectly. For a sequence Eu=
€a+ Ao X violating the assertion, we first show that £, converges to zero near
the value of = where the gluing takes place. The crucial point is then that
Ao — 0 because E,, is invertible on the parametrized space away from v’. One
then obtains a contradiction as in the proof of Lemma 4.3. The proof of the
uniqueness property proceeds as in the case of Proposition 4.1.

5. Vanishing critical points

It is the aim of this section to prove the formula of Lemma 3.7 for the change
of the coboundary operator at a nontransversal intersection y as in Lemma 3.3.
On a neighborhood of y let us fix the Kéhler structure (g, J) corresponding
to the Kéhler structure on C*. We consider an exact deformation of L’
generated by a time independent Hamiltonian H on P which is supported in
this neighborhood of y and which has the form

H(z1, - ,2n) =Rez;

on some smaller neighborhood U of y. Clearly, under such a deformation,
there exists for A < 0 small enough a pair of transverse intersections y:'\',y;
in U, whereas for A > 0, U does not contain any intersections at all. If we
denote the index of y; by p, then the index of y} is p+ 1 (see [9]). Let us
extend J to an almost Kéahler structure for A on P and denote as usual the
Morse cells for ¢5 by .#5(z,2). Then Lemma 3.7 follows from the following
existence result:

Proposition 5.1. Let 2,2 € LN L' be the transverse intersections with
w(z) = ply4) and p(y) = pwly-). Then there exists J as above and € > 0 so
that we have bijections between finite sets

— —— —

'/gE(x’ Z) = %_5(12,2) U (-%_5(23, y—_—e) X '/Z—E(ytsﬂ Z))

For a proof, consider the selfadjoint operator A, := J(y)d/dt on
L?([0,1], T, P) whose domain is given by the boundary conditions £(0) € TyL
and (1) € T, L'. It can be considered as the Hessian of 2 at the critical point
y € Q1. The special problems for nontransverse intersections arise because the
Fredholm property of E, in Proposition 2.1 depends crucially on the fact that
Az and A, have no zero eigenvalues (see Theorem 4 of [7]). This is closely
related to the rate of convergence of trajectories at z and y, which is expo-
nential in the nondegenerate case. If L and L’ have a common tangent vector
at y, i.e. if Ay has a zero eigenvalue, then Theorem 4 of {7] only implies that
8 is a Fredholm section of a suitable bundle over a certain Banach manifold
Plo,e)(z,y) consisting of paths which a-priori converge exponentially at y.
The exponential rate € has to be positive but smaller than the first positive
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eigenvalue of A,. By Theorem 2 of [8], its Fredholm index can be calculated
by considering the “spectral flow” along u of a certain family A,, z € 0,
of selfadjoint operators extending the operators A, for z € LN L. More
precisely, if z and z are transverse intersections, then the Fredholm index
of @ on P(z,y) is equal to the number of eigenvalue families of A,(,) with
lim; o a(r) < 0 and lim, o a(7) > 0. On Fo ¢ (z,y), it is equal to the
number of those families where lim,_, _o; a(7) < 0 and lim,_,o a(7) > €. One
can now verify that the index of 8 on Po)(z,y) must be one less than the
index of @ on Z(z,y_), which is u(z) — p. In particular, in the situation
of Proposition 5.1, it is zero. Since the genericity result of Proposition 2.1
still holds on these Banach manifolds (see Theorem 5 of [7]), this implies that
for J € Feg, #(2,y) N Foe)(,y) is empty, i.e., no trajectory in .4 (z,y)
has exponential decay. Since for possible future applications we would like to
consider the general case, we define

——

M (z,y) = M (2,y) — Floe) (2, 9)-
It follows from complex function theory (see also [7, Lemma 5.1]) that for

every u € .# (z,y) there exists a unique representative satisfying

(5.1) u(r,t) +e;

< Cue™,

T+t
where e; is the unit vector for the first component of C* and C,, depends on
u. We will henceforth use this gauge. A special Fredholm theory for .#(z,y)
was developed in [7]. Let us denote the derivative in the 7-variable by a prime.
Then by (5.1), the function

( )_{ llu'(O)fiz!  for7 <0,
TN forr>0

grows like 72 for positive 7. Define the norms

€|z = llow/*€llp + llowézllp,
€l @) = llow/*€l1p + llowéLllp,
where &7, is the “longitudinal component”

€1 = B(r){ou(r)v'(r), £(1))
and (, ) is the inner product in L2(u(7)*TP). If we denote by W (u) and L(u)
the corresponding Banach spaces of sections of u*T P, then E,: W(u) — L(u)
is Fredholm of index p(z) — p(zz) (see Theorem 4 of [7]). Moreover, we can

choose the dense set eg above so that not only .# (z,y) N PF.e) (2, y), but

(5.2)

(5.3)

also all sets 4 (z,y) (and similarly .# (y, z)) are regular. E, is then surjective
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and for &€ € W(u) with {£(0),7(0)) = O for all n < ker E,, = T,,.# (x,y), we
have

(5.4) 1Ellw(u) < CNEWE|L(w)-

To prove Proposition 5.1, we construct for each x := (u,v,A) € # (z,y) x

o

A (y,2) x (0,X9) the following “approximate trajectory”: If ¢, is the exact
deformation generated by H, then uy(r,t) = ¢x(u(r,t)) describes a path
in Q(L, Ly). Moreover, for each positive A small enough, there exist unique
diffeomorphisms fﬁ : R1 — R so that the paths

$x:(0) for r =0,
(5.5) wy (1) = ua(vf (7),1) for r < 0,

(5 (1), 1) forr>0
in P (z, z) satisty
(5.8) {w; (1), 0wy (1)) =0
for all 7 € R. To define 'yf, note that the function

(5.7) oy (1) = ——_—(U&IQ’ (?_;"T%(T» +1

is smooth. Whenever u(r,t) is in the domain U where the deformation is
linear, we have

(5.8) Ouy(7,1) = dey.

Hence by (5.4), ay increases like 72 for large 7, so that there exists a unique
solution ~; of the ordinary differential equation

5.9 -5 (1) = a5 (1)
which maps R_ surjectively onto R. Similarly, we define 'yj(' , replacing u by v.
Equation (5.6) is a direct consequence of (5.9). Finally, it follows immediately
from (5.4) that w, has continuous first derivatives at 7 = 0.

As in the preceding section, we now deform the approximate trajectory w,
into an element of .#(z, z).

Proposition 5.2. For compact subsets K C # (z,y) and K' C # (y, z),
there exists Ao > 0 and a smooth map

b K x (0,7) x K' — #y(z,2),

(u,v,)) = ulr v := expy, (&)
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with ||&x(|1p < CAY2-1/20 Moreover, if (u,v) is in the interior of K x K'
then there exists an € > 0 so that every trajectory contained in Ug(u,v) is in
the tmage of .

=]
In a similar way, we define inclusions of compact subsets K C .#(z,y) in

—_— © —
M_c(z,y~,) and of compact sets K/ C .#(y,z) in M_.(yT,,2z). This will
complete the proof of Proposition 5.1. Clearly, it suffices to consider the first
case. Let us define for x = (u, A\) with u € .#(2,y) and A > 0 small enough a
path w, in (L, L_,) approximately satisfying the trajectory equation. Note

that for Ag small enough, a smooth function p : #(z,y) X (—Xg) — R is
defined so that u(p(x),0) coincides with y3 (A) in the first component. Then
if R is chosen large enough,

ux(7,t) = dae(u(7, 1)) + B(r — R)(yx (A) — Ater — u(p(x), 1))

defines a path in Q(L/, L_») so that ux(p(x),t) = y5 - Asin (5.5), there exists
a unique reparametrization v, : R — (—o0, p(x)) so that

(5.10) Wy (1, 8) = ur (15 (1), t)
satisfies {Qwy (), w) (1)) = 0 for all 7 € R. Now we have

(¢}
Proposition 5.3. For every compact subset K C # (z,y) there exists
A1 >0 and a family of maps

h)\ K — ‘%—A(may—);
bau = exp,,, (&x(u))

for A € (0,)0), where wy is defined by (5.10) and ||€,]|1p < CAV/2-1/2P,
Moreover, there exists an € > 0 so that every trajectory in My(z,y5 ) which
is contained in the e-tube of u) 18 in the tmage of h,.

Propositions 5.2 and 5.3 together imply Proposition 5.1. We therefore come
to the proofs of the above results.

Proof of Proposition 5.2. Throughout the proof, we will denote by Cg,
k € N, positive real constants which depend only on the compact sets K and
K’. We apply Lemma 4.2 to the map

— —~

Ow, : W(zyx — LP(wyTP),
T, (€) = Dwy + Ex & + Ny(£).

As in (4.15), W(wx) = Tw,Z @R is the tangent space to the parametrized
path space. The additional direction is now generated by the vector field
X (wy(7,t)), where Xg is the Hamiltonian vector field of H. However, as
opposed to the situation of the preceding section, the operator family E, is

(5.11)



538 ANDREAS FLOER

not uniformly invertible with respect to the standard Sobolev norms. Define
therefore the weight functions

_ { lwl (T)llz* for 7 (0) < 7 < % (0),
x = _
lw, (EODIZ'  for 72> 7 (0).

For any section £ for wyTP, define the longitudinal component
EL(7) = B(r = 715 (0)B(1 (0) — 7) (o (7), €(7)).
Now we replace the norms on L?(wyTP) and T,,, & by
l1€llz, = llox/*Ellp + llox€ellp,
Ellw, = lloy/2Ellp + llox€rllp
We define the norm in the additional direction by the unit vector
XX = )‘1/2p+1t ’ XH(wX(Ta t))1

which is chosen so that the following estimate holds:
Lemma 5.1.

(5.12)

Crt < 1 Xxllw, <Cu,
O3 < |IExXyllz, < Co.

Proof. The time that w, spends in the neighborhood U of y where the
deformation is nontrivial is estimated by

(5.13) O7INY2 < |yE (M) < g (0)) < OAH2,

To prove this, we can by (5.1) restrict ourselves to the case u(r,t) =
—(r +4t)~1. Then for 7 < A\/2, we have |(vg)'(r)| < 2, so that v (A/2) —
7% (0) < 2A1/2, For 7 > A1/2, it follows from (5.8) that |jwl,(r)||2 > X, hence
0— ,7()‘1/2) > 2-1/2,

Now the estimates from above follow immediately since o, (r) = [{w/ (7)]|7"
< A7l To obtain an estimate from below, note that o,(r) > A~ for
(A2 <r<0. qed

Using the explicit formulas for the nonlinear part N, (&) given in Lemma
3.2 of [6], we find that for all £,¢ € Wy,

(5.14) 1V (€) = Nx(9)llz, < Callléllg, + sl MIE ~ sl »

since the weight on the longitudinal component in L, is only the square of

the weight of the same component in IjV\X. On the other hand, although the

weight o, is large in the region where u and v are glued together, we still have
Lemma 5.2.

(5.15) Bwyllr, < Cy - AV2-1/%,
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Proof. By (5.13), Lemma 5.2 follows from the uniform estimate
(5.16) oy (1) 0wy (7, t)] < Ca\'/2,

To prove (5.16), note that by construction of w, in (5.5), we have for —aA~1/2
< 7 <0, and a > 0 small enough,

wy (1) = u(vy (7)) + A -t - dey.
Therefore, with ~, = ~,,
w (r) = v (1 (T (1),
Jurg (1)) = Fu(yx(1)) + Aer = —u/ (7 (7)) + Aea.
The reparametrization is chosen in such a way that
(5.17) Aw (1) = 1 (9 (7)) - Aex,

where 7+(7) is the projection onto the L2-orthogonal complement of /(7).
Using the asymptotic estimate (5.1), we find with | X(7)] < Cge™",

w(r,t) = 55; (Ti‘it) +X(7)

72 2ut 2
= —elm (1— _— = _) +X(T)

(5.18)

We conclude that

(5.19) |l7* (r)ellz < Cs7™*

In order to calculate the weight, we obtain from (5.9),
Wi (7 (1) = o' (T)7y (v 1)

=0y )

Hence

0o Dl = A (e en ) + I )l

> Cs (/\+ —1-)
72

for some positive constant Ce. Together with (5.17) and (5.19), this yields

A+

Now (5.16) follows by elementary methods. q.e.d.
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It remains to invert the operator E,. Of course, since

Index E, = p(z) —u(2) +1= dim./?Z(a:, y) +dim.# (z,y),

we have to factor out a family of finite dimensional subspaces K, =~ ker E, @
ker E, of W(w,). Define

Wi = {€+aXy € W(wy) | (n(O) £(75 (0))) = 0 for all ) € ker E,,
nd (n(0), £(~y (0))) = O for all n € ker E, }.

Then we have

Lemma 5.3. There exist positive constants C and Ao depending only on
K and K' so that if A < Ag, then for each x € K x (0,Ag) x K', there exists
a continuous right inverse G : Ly, — W;(L of E, with

1GEllw, < Cll¢liL,-

Proof. In principle, we use the same method as in the proof of Lemma
4.3. Because the Fredholm index of E, restricted to W~ is zero, it suffices to
prove that we can choose Ag small enough so that for all x € K x (0, Ag) x K’
and all £ e W,

[1€llw, < CellExéllL,-

Proceeding indirectly, we assume that there exists a family x» = (u,\, U, A)
indexed by A € (0,¢) accunmlating at zero and a family &, + o) X), € W,\ =
WXA so that

(5.20) Hexllwa = 1,
and, abbreviating E) = Ex,,
(5.21) HExExlLx — O

for A — 0. Again, we derive a contradiction to (5.20). However, this point
is considerably more complicated than in the proof of Lemma 4.3. First note
that if a is any fixed positive number and 7 < 75 : (aA)~1/2, we have for A
small enough |a} (7)| < 1/a (see (5.7) and (5.8)). We now decompose © into
69 = [v5 ((a))~/2), ~f(—(ar)~1/?)] and the two components OF of its
complement. Then for (7,t) € ©, the reparametrization ~; satisfies

d 1
—_ -1 < —.
dr’y’\ (7) T a

Therefore, the weights o) can be compared with the weights o,, of (5.2)
through

(1 - 1/a)ou,(r) < oa(vx (7)) < (1 4+ 1/a)oy, (7).
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We now construct a section €~ of u*TP out of £ by

(5'22) §(Ta t) = D‘b/\t(u(’)'; (T)7 t))f—-(’)',\_ (T)’ t)a

where ¢y is the deformation by the Hamiltonian H. Then if £ is supported
in ©}, we have

1-1/a < [€7 Iwanll€llph < 1+1/a,

(5.23) ) hw
1-1/a <€ llenlléllzy £ 14+ 1/a,

(5.24) 1 Eus € (| L(ur) < (14 1/a)[IExEllLr + |I€]lwa/a-

Define now &, by (5.22) for 7 < 75 and set & = 0 otherwise. We will
apply (5.24) together with (5.4) to the section &, obtained from &5 by the
following two modifications. First, since it is not E) &y but E) (& + axX))
whose Ly-norm converges to zero, we solve the equation

(5.25) (Bux (£ u3) 7))z = (Bu, (an X)) 7)1

explicitly for f, by integration, given the initial condition f, (0) = 0. We
then have on (—o0, (aX)~'/?] x [0, 1]:

By (€5 + fx i Lus)

< 1Eun (€x + o X)) "l Lus) + o ll(Buy X3 )7l L(un)

< 2|Ex(én + anXo)|lza + €A+ axXallwa/a + aall[(ExXy) 7 |lwa
=1/a+e¢y,

where limy_.gex = 0. The term (E»X))r converges to zero since ||(e1)r(7)||
< C1177 L. The second modification is necessary since €, + [y u) is not an
element of W(uy); we have to cut it off close to 7 = 7. Of course, this
creates additional terms when we apply E,,. In particular, the longitudinal
part of 5 + f, u) may be large at the cutoff. We therefore use the following
trick: define real constants y, so that the longitudinal component of (£5 +
(f» —w)u')(7y) = 0. Let 8 be defined as in (4.3) and define a(:c) = 0 for
z <0 and a(z) =1 for z > 0. Then

Ex(n,t) =& — BT — ))& )T(1,1) + (i —ya)a(r — 757) -yl (7, 1)
is an element of W (u,), and satisfies
|lEu,\§,\”L(u,\) < “Eu,\ (f,\ +f )”L(u,\) + Hﬁ'( — Ty )€T”L(’u,\

The second term converges to zero if

(5.27) A"V max{|(€)(n,t) | T =y | <1} —0

(5.26)
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for A — 0. Hence assuming that (5.27) is correct, it follows with (5.26) and
(5.4) that

(5.28) Exllwus) < Cla+éh.
Here we have used the fact that the constant C in (5.4) can be chosen inde-

pendently of A, since u)y is contained in a compact subset of .# (z,y). We can
then choose a > 4C so that for A small enough,

”E)T +f)\_u,)\”W(u,\) < %
on (—00, (aX)/2 —1] x [0, 1]. Performing the same procedure at the other end,
we find & + fiT v}, on [—aA~1/2,00) x [0, 1] whose W (v3)-norm is less than %
for small A.

Let us now consider ¢ on 89 = [0, 6], where 3 = v (F(a))!/?). First,
we have to prove (5.27). Clearly, for A small enough we have wj (8) = exp, §x
in the sense of (4.1) on 6% for some ¢y : 89 — T, P. We can then define
&9 € LY(6()), T, P) as in (4.19) by

D, eJ(py(gA)E&) = E)\
on ©9. To prove (5.27), we claim that
(5.29) Jim (A™2)1,15) = 0.
In fact, if there exists a family (7,tx) € 89\ and a positive number ¢ so that
1€9(7, )| > €A/2+1/P for all ), we obtain a contradiction as follows: Define
ATV2E(r + 1y, 8) for |r| < A=1/2,
a(nt) = .
0 otherwise.
The crucial observation is now that for (r,t) € 69,
Ml<ao(r)<eox Tl

Hence by (5.20), |||l < Cs|lo?/2¢€]|, is bounded. We can therefore assume
that it converges weakly to some limit ¢y € LP(O,T,P). We want to show
that ¢o = 0. Note therefore that for any p > 0, the restriction ¢ to 8, =
[—p, p] x [0,1] is, for A small enough, a bounded sequence in LY(8,, T, P). We
can therefore assume that it converges weakly in this space to ¢5. Moreover,
if Eg = 9/07 + J3/0t is the standard Cauchy-Riemann operator, it follows
from (5.21) that for all p and for A — 0,

(5.30) ||(Eosa)e,llp — 0.

(Note that the contribution of A~'/2X) vanishes locally.) By weak lower
semicontinuity of {5.30) we conclude that Eq¢y = 0 everywhere on ©. Together
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with ¢p € L?, it follows that ¢o = 0. Since weak convergence in L} (0,, T, P)
implies uniform convergence, this contradicts the assumption and therefore
proves (5.29).

We now define the longitudinal part of 52 as the integral

€,(r) = [0 (&(r, 1)1 dt

over the e;-component of £,. Correspondingly, we define the transversal part
of €9 as €9, = €0~ ¢€9, -e;1. It follows from (5.21) that A~1/2||(Ep&3)7||, — O.
Using a cutoff function and (5.29), this implies

(5.31) A28l — O,

since Ey is invertible on the transversal component of Wy ,(8,T,P). To
obtain an estimate on the longitudinal part, we first have to solve an equation
corresponding to (5.25). If we choose an initial condition so that

Srox) +arfRoy) = & (ry) + aa sy ()l (r)I?
we obtain on 69:
(5.32) AL + xSl < CiaA I Eo(6, + an Sy — 0.
If we replace f by g3, which is defined so that

(&h + xgd)(@x~12) = (&fp + an o™ (),

we obtain in the same way
(5.33) A7Y2)1€9, + axglllip — 0.
However,

I8 = 08 = aa U () + 5 (1)) - A 2 Cfglan /2+1/29),
By (5.13) we have on the interval [03,07],

Ot < ATV N/ < o,

Hence (5.32) and (5.33) can both be true only if a) — 0. Now (5.28), (5.32),
and (5.33) together imply a contradiction to (5.20). This completes the proof
of Lemma 5.3.

It remains to prove the uniqueness statement of Proposition 5.2. Therefore
let wy € #),(z,2) be a family of trajectories contained in the 1/k-tube of
(u,v). As in the proof of the uniqueness statement of Proposition 4.1, we
have to show that if we define W, = wy, for xx = (u,v, A\¢), we have wx =
expy, (§k) With limg_,c0 ||€kllw,, = 0. By applying a translation if necessary,
we can assume that

2(w(0)) = 2(y).
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Choose 77 and 7 so that

a(wr(ry)) = 5(2(2) —(y)),  a(we(ry)) = 5((y) - (2)).

Then by Proposition 2.2 we can choose a subsequence so that 7, * wy and
T,j' *wy converge locally to u and v, respectively. We now split © foreach £k € N
into five parts: Choose p large enough so that u takes values in the union of a
neighborhood U(z) and U(y) outside ©,, where U(y) can be identified with
open subsets of C™ as described in the beginning of this section. We can also
assume p to be large enough so that v takes values in U(y) UU(z) outside .
Then define

IF={r+.0)|lrl<pt,  Ig={G¢+r,t)|Ir] <}

For k large enough, we can now assume that the complement of I,': and I
has three components O, 8} and O} so that u(Bq; ) C Uz, u(€;) C Uy,
and u(©}) C U,. Now estimates of [[€xllw,, on I £ follow immediately from
the uniform convergence of Proposition 2.2. The estimate on Glf uses the
transversality of the intersections x and z and follows essentially the lines
of the proof of the uniqueness statement of Proposition 4.2. We therefore
restrict ourselves to proving the estimate on ©%, which is the most delicate
part because of the weights in || ”ka . The idea is to compare u to certain
standard holomorphic functions. Consider
'ema _ ema

fu(a) = ¢ tan(—ub) = ZW

for § € C. It has poles for § = 1(2k+ 1) -x/u. Moreover, it maps the interval
(=im/u, 37/u) diffeomorphically onto the real axis. The line R+1 is mapped
to a circle, which is defined by

fu(@) = itan(—ip) = i tanh(u),

. o1
i+ )=

We want to normalize this function so that R + 1 is mapped to the circle of
radius 1. We therefore divide f, by the radius of this circle to obtain

(5.34) gu =2 (m - tanh(u))_ tan(—u)

We now show that the first component of any sequence (wg, Ag) € #y(x, 2)
which converges locally to the constant trajectory 7 has to be asymptotic in
a very strong sense to the family of functions g_,, of (5.34) for 2sinh? py =
Ax. Note therefore that g,, is invertible in the neighborhood Uy, to a map
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¢r : Uy — C. Now define the family of holomorphic functions
fe:00—=C,  fi(2) = ¢r(wk(2)) — 2
with the property that
fe(R) C R, K(R+1)CR.

Moreover, fir(r; ~ p) and fi(7, + p) are bounded independently of p. Now
the Cauchy-Riemann equation for such maps can be rewritten as the ordinary
differential equation (8/07)fx(t) = Afk(r) on the linear space of paths in
C originating and ending at R. Here, A is the linear operator Az = J2.
Therefore, it follows from linear functional analysis that

fr(r) £ Cexpl—pmin(ry — p, -1 —p)]

for positive constants C and p, as long as 3(7; +p) < 1(rf — p). For k large
enough, this proves the desired estimate in 6.

Proof of Proposition 5.3. The proof is in many aspects parallel to the
proof of Proposition 5.2. One difference is that we apply Lemma 4.2 to the
family of maps

gwx: Tw, P — Lp(w;TP)

rather than to the parametrized space. To define a suitable family of norms,
consider the weight function

|lw} (r)llz* for 0 <7 < 1p(x),
ox(r) = § llwi (3p0Iz*  for 7 < F0(x),
||'w;((0)||;1 for 7 < 0.

Then if we define the family of norms || ||, and || ||z, by the same formula
as (5.12), it follows again that

lim [[Buy |1z, =0,
V(&) = Nl < Cralllelm + sl IE = sllwy -

The index of the operator E, is equal to the dimension of 4 (z, y) by Theorem
5 of {7]. To define a subspace on which to invert it, define for each & € W (w,)
the section & € W(u) by

(5.35) &(7,t) = Dp_xe&(x (1), 1)
Then define the subset
Wi = {€ € W(wy) | {€(0),n(0)) =0 for all n € ker E,}.
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Since E, restricted to WiL has index zero, we obtain a uniformly bounded
family of inverse operators G, if we can show that there does not exist a
sequence xx € Wi = W, so that A — 0 and

(5.36) [|€xllwa = 1,
(5.37) [|ExéxllLa — O.

The crucial point is again that we can divide © into the part with 7, % P =
1p(xx) where 44 (r) is bounded, and therefore formula (5.35) essentially de-
fines an isometry between W, and W (u,) as well as between Ly and L(uy),
and the part with r > %p,\, where the weights are essentially constant. The
estimate on the first part is accomplished by the same method as in the proof
of Lemma 5.3. We also obtain a uniform estimate near %p,\ of type (5.27). It
immediately implies an estimate on the transversal component of £, on the
second domain. To obtain the estimate of the longitudinal component of &,
on the second domain, note that the longitudinal part of E) is of the form

BEr =1 - (O IOl

and that the second term for 7 — co converges to a nonzero value ay —2A~1/2,
Now instead of conjugating Ef with a multiplicative operator, we conjugate
it with the contraction operator

exf(r) = A7V F(A7Y20).

Then cyE{cy' converges for A — 0 to the operator f — f' + f, which
defines an isomorphism between W7 (R,R) and LP(R,R). But these norms
correspond precisely to the longitudinal parts of || ||w, and || ||zx under ca.
This contradicts (5.36) and therefore completes the proof of the existence
assertion in Proposition 5.3. To prove the uniqueness, we proceed as in the
proof of Proposition 5.2, using an appropriate comparison function.

References

[1] V. I. Arnold, Sur une propriete topologique des applications globalement canoniques de la
mecanique classique, C. R. Acad. Sci. Paris 261 (1965) 3719-3722.

[2] ——, Mathematical methods of classical mechanics (Appendix 9), Springer, Berlin, 1978.

[3] M. Chaperon, A theorem on Lagrangian intersections, preprint, 1983,

[4] C. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in
Math., No. 38, Amer. Math. Soc., Providence, RI, 1978.

[5] C. C. Conley & E. Zehnder, The Birkhoff-Lewis fized point theorem and a conjecture of
V. I. Arnold, Invent. Math. 73 (1983) 33-49.

[6] A. Floer, Proof of the Arnold conjecture for surfaces and generalizations to certain Kéhler
mantfolds, Duke Math. J. 53 (1986) 1-32.

[7) ——, The unregularized gradient flow of the symplectic action, to appear in Comm. Pure
Appl. Math. (1988).



MORSE THEORY FOR LAGRANGIAN INTERSECTIONS 547

[8] ——, A relative Morse indez for the symplectic action, to appear in Comm. Pure Appl.
Math. (1988).
[9] —, Witten’s complez for arbitrary coefficients and an application to Lagrangian intersec-

tions, to appear in J. Differential Geometry.

[10] , Construction of monopoles on asymptotically flat manifolds, to appear.

[11] B. Fortune, A symplectic fized point theorem for CP™, Invent. Math. 81 (1985) 29-46.

[12] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985)
307-347.

[13]) H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincaré, Anal.
Non Linéaire 2 (1985) 407-462.

[14] F. Laudenbach & J. C. Sikorav, Persistence d’intersection avec la section nulle au cours
d’une 130topie hamiltonienne dans un fibre cotangent, preprint, 1985.

[15] J. Milnor, Morse theory, Annals of Math. Studies, No. 51, Princeton University Press,
Princeton, NJ, 1963.

[16] ——_, Lectures on the H-cobordism theorem, Math. Notes, Princeton University Press,
Princeton, NJ, 1965.

[17] R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963) 299-340.

[18] —, Foundations of global analysis, Benjamin, New York, 1968.

[19] J. C. Sikorav, Points fizes d'un symplectomorphisme homologue a lidentite, J. Differential
Geometry 22 (1982) 49-79.

[20] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

{21) C. H. Taubes, Self-dual Yang Mills connections on non-self-dual 4-mantfolds, J. Differen-
tial Geometlry 17 (1982) 139-170.

[22] ., Gauge theory on asymptotically periodic 4-manifolds, preprint.

[23] C. Viterbo, Intersections de sous-varictes lagrangiennes fonctionelles d’action et indice des
systemes hamiltoniens, preprint, 1986.

[24] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math.
6 (1971) 329-346.

[25] —, Removing intersections of Lagrangian immersions, Illinois J. Math. 27 (1983) 475—
500.

[26] —, On extending the Conley Zehnder fized point theorem to other manifolds, Proc.
Sympos. Pure Math., No. 45, Amer. Math. Soc., Providence, RI, 1986.

[27] E. Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982) 661—
692.

COURANT INSTITUTE OF MATHEMATICS
NEW YORK UNIVERSITY





